«Не я» внутри. Как стареет иммунитет человека

26.06.2019


Макрофаг гоняется за бактерией. David Peterson, DC, DCCN, FAAIM / youtube. Все фото с сайта https://chrdk.ru/sci/immune-aging


Когда речь заходит о старости, мы нередко представляем себе организм как набор изношенных частей, которые не в состоянии выполнять свои прямые функции. Для иммунной системы это верно лишь отчасти. Пожилые люди действительно чаще болеют, например респираторными инфекциями, и переносят это тяжелее молодых, но вовсе не потому, что их иммунные клетки и органы не работают. Напротив, они трудятся день и ночь, просто заняты куда более важным делом — борьбой с собственным телом.

Иммунная система животного занята тем, что  отвечает на философский вопрос «что есть я?» на практике. Ее основная функция — отличать «я» от «не я», то есть свое от чужого, и это чужое уничтожать. Задача не из легких, особенно если учесть, что в организме человека живут сотни типов клеток, заполненных десятками тысяч молекул, а атаковать его могут сотни паразитов (и это не считая собственные опухоли). Ответ иммунитета обычно звучит так: «Я — это набор знакомых, привычных молекул. То, что я впервые вижу, — это не я».

Стреляю без предупреждения

Самый простой способ распознать врага — составить его фоторобот, примерный список черт, которыми он может обладать. На молекулярном уровне это тоже возможно: наши паразиты от нас эволюционно очень далеки и в их организме есть множество структур, которые не встречаются у нас. Это, например, кутикулы (плотные покровы) многих червей, клеточные стенки бактерий, капсиды (белковые оболочки) вирусов и так далее. В их составе есть молекулы, которые ни при каких условиях не возникают сами по себе в организме человека, это образы патогенности, или PAMP (pathogen-associated molecular patterns). На иммунных клетках человека есть к ним рецепторы — своего рода ориентировки: если рецептор распознал РАМР, значит, в организм проник паразит и в него можно стрелять на поражение.

Иногда рецепторы к образам патогенности есть и на обычных, не иммунных клетках организма. Это нужно, чтобы, например, почувствовать вирус, пробравшийся внутрь клетки, и подать сигнал бедствия.

Но в основном патогенный дозор несут профессионалы — клетки врожденного иммунитета. Это макрофаги, которые специализируются на поедании противника (фагоцитозе), и гранулоциты, которые поливают врага токсичными веществами (паралитическими ядами и свободными радикалами).

Как только клетка врожденного иммунитета чувствует присутствие врага, она не только готовится к атаке, но и сигнализирует коллегам об опасности, выделяя провоспалительные белки. Они действуют на окружающие иммунные клетки, заставляя их активнее двигаться и производить больше токсинов. Совокупность этих боевых действий называют воспалением.

Помимо охоты за чужаками, иммунные клетки часто подрабатывают спасателями, разбирая завалы в поврежденных тканях и перемалывая (точнее, переваривая с помощью фагоцитоза) осколки внеклеточных молекул и останки клеточных тел. Но, чтобы вовремя среагировать на чрезвычайное происшествие в том или ином органе, им необходимо распознать сигналы собственных клеток, терпящих бедствие. Такими сигналами служат стрессорные молекулы, или алармины, или DAMP (danger-associated molecular patterns), — вещества, которые в норме не покидают пределов клеток и не оказываются в крови, например ДНК и связанные с ней белки, митохондриальные молекулы или АТФ, энергетическая «валюта» клетки.

Набор ориентировок у врожденного иммунитета невелик и способен распознать только ограниченное число молекул. С этой точки зрения очень удобно, что многие алармины похожи по своей структуре на образы патогенности. Например, жиры из внутренней мембраны митохондрий чем-то напоминают жиры из бактериальных оболочек (и это неудивительно, ведь митохондрия — бывшая бактерия). Поэтому иммунные клетки развивают одинаковое воспаление вне зависимости от того, чей труп встретился на их пути — раненого врага или пострадавшего друга. И эта система эффективна, пока ткани не начинают стареть и умирать начинают буквально все подряд.

Специалисты узкого профиля

Система врожденного иммунитета надежна, но работает медленно и неповоротливо. Военные, которым раздали список врагов, оказываются бессильны, когда враг маскируется под мирных жителей (как это делают, например, раковые клетки) или сбривает усы, становясь хоть немного непохожим на свой фоторобот. Чтобы гарантированно вычислить чужака, позвоночные животные обзавелись системой приобретенного иммунитета, которая состоит из высокоспециализированных клеток — лимфоцитов.

Каждый В- или Т-лимфоцит знает в лицо лишь одну молекулу на броне врага — антиген. Встретившись с ним, лимфоцит начинает делиться, создавая собственные клоны. Затем новорожденные солдаты атакуют: В-лимфоциты обстреливают врага антителами, а Т-лимфоциты — разрушают его мембрану, чтобы запустить в противнике апоптоз (в тех случаях, когда враг — клетка).

Одержав победу, лимфоциты никуда не исчезают и остаются жить в организме, превращаясь в клетки памяти. Если тот же враг попробует второй раз сунуться на чужую территорию, Т- и В-клетки отреагируют гораздо быстрее, чем в первый раз: их стало больше и им не нужно размножаться, а можно сразу идти в бой. Именно поэтому, например, человек не болеет столбняком после прививки: вакцина работает как тренажер, запуская образование клеток памяти, и, если столбнячная палочка снова оказывается в крови, лимфоциты уничтожают ее быстрее, чем их хозяин успеет заметить симптомы болезни.

Эта стратегия работает только при том условии, что набор лимфоцитов достаточно разнообразен, чтобы их корпус мог узнать любого захватчика. Чтобы добиться этого разнообразия, молодые лимфоциты в начале своей жизни перекраивают часть своей ДНК, кодирующую рецепторы. Из длинной «инструкции» (гена) клетка случайным образом вырезает отдельные слова, а получившиеся пробелы заполняет первыми попавшимися альтернативами (нуклеотидами). Поскольку в каждой клетке этот процесс идет независимо, на выходе получаются миллионы вариантов. Каждый юный лимфоцит приобретает возможность распознать какой-то один антиген, причем это может быть совершенно любая молекула — встречающаяся в организме человека, или принадлежащая его паразитам, или вообще не существующая в природе.

Следующий шаг — сделать так, чтобы эта система не стреляла по своим. Для этого органы, воспитывающие лимфоцитов (красный костный мозг и тимус, он же вилочковая железа) заполнены специальными клетками. Они показывают юным псам кровавого режима все возможные белки собственного организма и убивают тех, кто признает в них врага. Система жестока: она предоставляет иммунным клеткам свободу выбора, а затем уничтожает тех, кто сделал его неправильно. До зрелости доживает лишь сотая часть,  зато все выжившие лояльны клеточному государству и не опасны для мирного населения.

Контроль за молодыми специалистами продолжается и после выпуска из «военных училищ». В отличие от бойцов врожденного иммунитета, лимфоциты не стреляют по первому сигналу, а ждут сначала одобрения коллег. Распознав свою мишень, лимфоцит будет атаковать, только если его простимулируют другие иммунные клетки (так называемые Т-хелперы) и когда вокруг него соберется много провоспалительных белков.

Если же лимфоцит встречает врага в одиночестве, без поддержки товарищей по иммунной системе, он впадает в анергию — состояние уныния и подавленности, в котором он не способен ни на кого напасть. Этот механизм призван избежать осечек: как и любая живая система, процесс отбора лояльных лимфоцитов не работает со стопроцентной точностью. Некоторые аутореактивные лимфоциты, то есть принимающие собственные антигены организма за чужаков, умудряются пережить суровое наставничество красного костного мозга и тимуса — анергия заставляет их молчать, поддерживая спокойствие в многоклеточном государстве.

И это работает до того момента, пока население не начнет превращаться в подозрительных личностей.

Битва со старостью

С течением времени в тканях начинается разруха. Распадаются вне- и внутриклеточные молекулы, клетки в ответ на это стареют, перестают расти и делиться, зато начинают выделять провоспалительные белки, призывающие иммунные клетки на расчистку завалов.

Часть клеток не выдерживает давления молекулярного мусора и гибнет, выбрасывая наружу стрессорные молекулы. В ответ на это в ткани приходят бойцы врожденного иммунитета и разворачивают там воспаление: не только убирают мусор и поглощают остатки погибших клеток, но и выделяют свои провоспалительные белки, призывая новых бойцов на помощь.

Макрофагов и гранулоцитов время тоже не щадит: несмотря на то что их численность с возрастом меняется несильно, они теряют навык борьбы с патогенами, сохраняя разве что способность к фагоцитозу. Снижается и их подвижность, и, возможно, именно поэтому покинуть ткань после разбора завалов они не способны, становясь постоянными ее обитателями. Так воспаление превращается в хроническое.

А вот активность приобретенного иммунитета падает. Молодых бойцов становится все меньше, поскольку кроветворные клетки с возрастом делятся хуже. Старая гвардия со своей стороны мешает новым поступлениям занять место в строю, выделяя вещества, подавляющие развитие и активацию юных лимфоцитов. В этом есть своя логика: зачем плодить новобранцев, если войско уже укомплектовано? Но поскольку старые бойцы уже не те, что раньше, и сами по себе менее активны, то весь приобретенный иммунитет страдает от такой дедовщины.

Поэтому его активность восстанавливается после «бомбардировок»: если пожилой пациент подвергается химиотерапии, то многие «деды» погибают, а красный костный мозг и юные лимфоциты начинают работать лучше. Эта процедура, конечно, никоим образом не аналогична омоложению иммунной системы, но некоторым В-клеткам от нее действительно становится лучше.

Кроме того, с возрастом приобретенный иммунитет теряет свой главный козырь — разнообразие. В молодости его сила в том, что на любой внешний антиген, пусть даже самый экзотический, найдется свой специалист.

Но с течением времени в рядах лимфоцитов возникает неравенство: одни клетки уже встретили свой антиген, размножились, повоевали и стали клетками памяти, а другие всю жизнь так и простояли в бесплодном дозоре, если, например, они специализируются на антигенах редкого тропического червя, с которым их хозяин никогда не встречался.

И поскольку часть клеток стареет и погибает, а выжившие тормозят развитие молодых, то получается, что власть в войсках лимфоцитов захватили клоны — потомки тех клеток, что поучаствовали в иммунных сражениях. И когда на пути такого однообразного войска встретится наконец тропический червь, то среди бойцов иммунитета может не найтись умельца, который бы справился с чужаком.

Равновесие нарушается и между двумя видами вооруженных сил: приобретенный иммунитет работает хуже, а врожденный — лучше. В тканях возникает провоспалительная среда — за счет белков, которые выделяют макрофаги и гранулоциты во время разбора завалов. Поэтому лимфоциты, случайно оказавшиеся в тканях и встретившие там антиген, похожий на свою мишень, с большой вероятностью примутся его атаковать. А таких антигенов на лицах порядочных граждан с возрастом становится все больше, поскольку ДНК постепенно накапливает мутации и клетки начинают производить незнакомые лимфоцитам белки. В условиях здорового молодого организма лимфоциты предпочли бы не заметить эти небольшие изменения и впали бы в анергию. Но поскольку вокруг них все больше признаков разрухи и кризиса, они все чаще сталкиваются с искушением ввязаться в драку — со своими собственными клетками. Поэтому во многих возрастных болезнях можно найти иммунную составляющую — например, в атеросклерозе (воспаление возникает в стенке сосудов) или артрите (при этом разрушаются суставные хрящи). С этой точки зрения старость — это одно большое аутоиммунное заболевание, то есть атака организма на себя самого.

Кто я теперь

Происходящее в тканях стареющего организма дискредитирует основную функцию иммунитета — отличать себя от чужого. Вместе с тем это поднимает и теоретический вопрос, о котором иммунологи спорят еще с середины прошлого века: к чему свести «молекулярную идентичность» человека? Какими словами описать, какими методами подсчитать то, что иммунная система понимает «интуитивно»: что есть «я», а что — «не я»?

Вариантов предлагалось множество. Например: «я» — это последовательности белков, закодированные в геноме организма. Или же: «я» — это все молекулы, которые не вызывают у лимфоцитов никаких подозрений (но, например, не молекулы мозга, куда бойцов иммунитета практически не пускают). Или так: «я» — это молекулы, концентрация которых в организме не ниже определенного порога.

Позже на сцене появились микробы. Стало понятно, что они играют важную роль в жизни организма и работе иммунитета — и ситуация усложнилась: кроме «я» (self) и «не я» (non-self), ученые стали говорить еще о «псевдо я» (quasi-self). В эту новую категорию предлагалось отнести микробные антигены, с которыми иммунные клетки контактируют с самого рождения, так что могут считать их почти что частью себя. Именно поэтому большинство бактерий в нашем кишечнике не отторгаются и продолжают сосуществовать с остальным организмом.

В рамках концепции «я»/«не я» старость выглядит как диссоциативное расстройство на молекулярном уровне, потеря границ между собой и окружающим миром.

Возрастные изменения настолько сильно сказываются на молекулярном облике организма, что, столкнувшись со старым знакомым в очередной раз, иммунная система не узнает его и хватается за пистолет.

Чтобы вписать процессы старения в парадигму иммунитета, итальянский геронтолог Клаудио Франчески предложил новую концепцию — «жидкое я» (liquid self). Под этим он имеет в виду, что к «я» следует свести набор антигенов, к которым иммунная система толерантна в каждый момент времени, и набор этот не постоянен, а текуч и зависит от иммунобиографии — событий в жизни иммунной системы.

Франчески представляет свою концепцию с помощью знаменитого «ландшафта Уоддингтона». Эту модель биолог Конрад Уоддингтон предложил для описания клеточных судеб в развитии организма: клетка катится по ложбине, как шарик по колее, и время от времени совершает выбор — например, между тем, стать ей клеткой легкого или клеткой кишечника. И чем дальше друг от друга находятся две колеи, тем сложнее клетке перескочить между ними, именно поэтому в нашем организме практически не бывает трансдифференцировки, то есть смены клеточных профессий.

Франчески рисует похожую картину для антигенов. Каждая молекула в начале жизни организма может скатиться либо в правую сторону ландшафта («свое»), либо в левую («чужое»). На это влияют ранний отбор лимфоцитов (который уничтожает всех, кто покусится на белки организма) и взаимоотношения с симбиотическими бактериями, которые требуют от организма признания ряда микробных молекул «своими».

Но после первого разделения судьба антигена может измениться — например, если на нем повиснет остаток углевода (это часто случается с белками в стареющем межклеточном веществе), он станет вызывать больше подозрений. И наоборот, вещество, бывшее изначально чужеродным, может попасть в организм через рот, и тогда кишечные бактерии могут подавить иммунный ответ на него (феномен «оральной толерантности») — и организму придется в какой-то степени смириться с чужаком, которому дали убежище критически важные для организма союзники.



С этой точки зрения, никакого абсолютного «я» не существует. Представление организма о себе самом эволюционирует вслед за возрастными изменениями. Старение в таком случае не обязательно упадок системы, но ее перестройка, попытка угнаться за собственной текучей идентичностью и соответствовать новому образу. Но чем дальше, тем сложнее дается иммунитету переизобретение себя, и консерватизм постепенно одерживает верх. Однажды, оглядываясь вокруг, иммунные клетки обнаруживают себя в кольце врагов, в которых не узнают бывших друзей. А дальше — все по инструкции: мишень, воспаление, антитела, апоптоз, смерть. 

Автор Полина Лосева

                                                                                                Chrdk                

Т-лимфоциты доводят до апоптоза раковую клетку. S K / youtube

Делясь ссылкой на статьи и новости Похоронного Портала в соц. сетях, вы помогаете другим узнать нечто новое.
18+
Яндекс.Метрика